SVM
1、分类1
2
3
4
5
6
7
8
9
10
11
12
13
14
15from sklearn import svm
X = [[0, 0], [1, 1], [1, 0]] # training samples
y = [0, 1, 1] # training target
clf = svm.SVC() # class
clf.fit(X, y) # training the svc model
result = clf.predict([2, 2]) # predict the target of testing samples
print result # target
print clf.support_vectors_ #support vectors
print clf.support_ # indeices of support vectors
print clf.n_support_ # number of support vectors for each class
2、回归1
2
3
4
5
6X = [[0, 0], [1, 1]]
y = [0.5, 1.5]
clf = svm.SVR()
clf.fit(X, y)
result = clf.predict([2, 2])
print result